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ABSTRACT 

 
Consider the case of two-stage sampling where (first stage) m bins are selected from a 
large population of M bins each containing N items, (second stage) inverse subsampling 
is performed without replacement from each of the m bins, and a binary observation is 
made on each subsample item (inverse hypergeometric distribution). Denote the two 
types of items Red and Blue. Assuming N is known but the number of each type is not, 
we consider the hypothesis that the number of Red items is the same in all M bins. We 
employ an unbiased parameter estimator and use the Delta Method to approximate the 
estimator’s variance. We then propose a large sample statistic for testing the hypothesis. 
We selected various parameter values for the inverse hypergeometric distribution to 
empirically investigate performance of the test in terms of exact calculations of the ability 
of the test to maintain significance at the nominal 0.05 level under the null hypothesis and 
inform power of the test for specified parameter values when the null hypothesis is false. 
The empirical findings provide pragmatic validation of the merits of the test.  
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1. INTRODUCTION 

In a previous paper, we developed the unbiased estimator of the parameter of Inverse 
Hypergeometric Distribution (IHG) and then used the Delta method to develop 
approximations for the variance of this unbiased estimator. Here we present a large 
sample statistic for testing the hypothesis that the parameter has a specific value. We 
extent the testing to the case of two-stage sampling and evaluate its performance in terms 
of exact calculations of expected values for probability of Type 1 errors under the null 
hypothesis and power estimated under selected values of the parameter under the 
alternative hypothesis. We begin in Section 2 with an overview of the salient 
characteristics of the distribution. 
 

2. THE INVERSE HYPERGEOMETRIC DISTRIBUTION 
 
Consider a bin that contains a total of N balls where R balls are red, B balls are blue and R 
+ B = N. Suppose we wish to select a random sample from the bin and observe the 
number of balls of each color in the selected sample. Our goal might be, for example, to 
estimate the number of red balls in the bin where N is known and R (hence, B) is not. 
 



 
 

Suppose the balls are well mixed in the bin and a given trial of an “experiment” is as 
follows: we randomly select  N balls, sampling one at a time without replacement, until 
we obtain a fixed number of red balls (successes), denoted as r, where r {1, 2, … , R}. 
Let X {0, 1, … , B} denote the number of blue balls that must be drawn to get r red 
balls. Note that we stop selecting balls when the rth red ball is chosen so that some 
permutation of r – 1 red balls and x blue balls will be chosen in the first r + x – 1 
selections and the last ball drawn will always be red. Let A1 be the event that r – 1 red 
balls are drawn in the first r + x – 1 trials and let A2 be the event that the rth red ball is 
drawn at the (r + x)th trial given that event A1 has occurred. Now, the probability X = x is 
     121 | AAPAPxXP     which can be expressed as 
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This expression represents the probability distribution function (pdf) for the random 
variable X. For given N, R and r, we refer to the non-zero probabilities determined by the 
pdf for all values in the domain of the random variable, together with the corresponding 
values of the random variable that occur with these non-zero probabilities, as the IHG  
distribution. IHG  distributions are skewed to the left when R < B and to right when R > 
B, but when N is large and R and B are approximately equal, the probability distributions 
are close to being bell-shaped and resemble normal distributions. The mean and variance 
of X are, respectively, 
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3. TESTING THE HYPOTHESIS H0: R = R0 

 
Let 
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and note that  
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indicating that ෠ܴ௑ is an unbiased estimator for R. Moreover, 
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Using the Delta method, an estimator for the variance of the unbiased estimator is given 
by 
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and, since R is unknown we use the approximation 
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For large samples, the statistic 

ܼ ൌ
෠ܴ௑ െ ܴ଴
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has a distribution that is approximately Gaussian  with mean = 0 and standard deviation = 
1 and therefore can be used to test the null hypothesis   

ܴ		:଴ܪ 	 ൌ ܴ଴ 

 

4. TESTING THE HYPOTHESIS H0: μࡾ = R0 

 

Consider the case of two-stage sampling where (first stage) m bins are selected from a 
large population of M bins each containing N items, (second stage) inverse subsampling 
is performed without replacement from each of the m bins, and a binary observation is 
made on each subsample item (inverse hypergeometric distribution). Denote the two 
types of items Red and Blue. Assuming N is known but the number of each type is not, 
we consider the hypothesis that the number of Red items is the same in all M bins. Let ܺ௛ 
denote the blue balls selected before the rth red ball is chosen from the hth bin, where h = 
1, 2, … m, ; further, let	 ෠ܴ௛ and  ෠ܸ௛ denote sample estimates and variances based on the 
unbiased estimator of ܴ and the approximate variance estimator, respectively, for the hth 
bin.  Let 
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represent the average estimate and variance, respectively, of the number of red balls in 
the m bins. If M is large, and  

௠

ெ
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  would be superior to Z for testing the stated hypothesis.  

 

5. EXACT CALCULATIONS USED TO EVALUATE TEST PERFORMANCE 
 
We employ an unbiased estimator of R and use the Delta Method to approximate the 
estimator’s variance. We then propose a large sample statistic for testing the hypothesis.  

Specifically, Formulas for variance ܸ൫ ෠ܴ௑൯ ൌ ∑ ܲሺܺ ൌ ሻ௫ୀ஻ݔ
௫ୀ଴ ൫ ෠ܴ௫ െ ܴ൯

ଶ
 and test 

statistics of	the	form	ܼ ൌ
ோ෠೉ିோబ
ඥ௏ሺோ෠೉ሻ

 were used for exact calculations with SAS 9.3 and R 3.0 

software. We selected various parameter values for the IHG to empirically investigate 
performance of the test in terms of exact calculations of the ability of the test to maintain 
significance at the nominal 0.05 level under the null hypothesis and inform power of the 
test for specified parameter values when the null hypothesis is false. In this paper, we let 
R = 10, 20, 50, 60, and 90; r = 5, 15, 15, 15, and 15, respectively. For a given random 
variable of X, when the absolute value of test statistics ܼ is greater than or equal to 1.96, 
the power of rejecting H0 will be assigned to 1.0. Otherwise a value of 0 will be assigned. 
The overall power of rejecting H0 will be the weighted average of production between 

 P X x and each rejecting power (1.0 or 0) when x = 0, 1, 2, 3, …The exact 

calculations will be performed for M = 1, 2, and 3, where M represents the number of 
bins.  
 
 

6. RESULTS FROM THE EXACT CALCULATIONS 
 
The results from exact calculations were presented in Figures 1-5. 
 

1. The power of rejecting Ho is at or close to nominal 0.05 level when the null 
hypothesis is true (Figures 1-4). 
 

2. The power of rejection is quite strong (approaches to 1.0) as departures from the 
null increase (Figures 1-5). 
 

3. When R0 is close to N (e.g., 100) and Ho is true, the probability of rejecting this 
null hypothesis is not maintained desirably close 0.05 (Figure 5). 
 

4. Overall the larger the number of bins, the bigger the power of rejection. 
However, the effect of the number of bins is minimized when the null hypothesis 
is true or R0 is close to N. 
 

 



 
 

 
 
 
 

 
 

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

10 20 30 40 50

R0

Figure 1. Power of Rejecting Ho: R = R0 (R = 10,  r = 5)  
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Figure 2. Power of Rejecting Ho: R = R0 (R = 20, r = 10)  
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Figure 3. Power of Rejecting Ho: R = R0 (R = 50, r = 15)  
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Figure 4. Power of Rejecting Ho: R = R0 (R = 60, r = 15)  
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7. TESTING H0: ࡾഥࢄ	=	ࡾഥ  ࢅ
 
Let ܯ௑ and	ܯ௒  denote the number of bins in two populations of bins. Suppose we select 
without replacement a random sample of ݉௑ and ݉௒, respectively, from each of the two 
populations for the purpose of testing the hypothesis that the number of red balls in the 
bins is the same in the two populations; i.e., H0: തܴ௑	=	 തܴ௒ where 
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The proposed large sample test statistic is 
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8. TESTING H0: ࡾഥ૚	=	ࡾഥ ૛ ൌ ⋯ ൌ  ࡷഥࡾ
 

Let M1, M2, … ,  MK denote the number of bins in K populations of bins. Suppose we 
select without replacement a random sample of ݉ଵ,݉ଶ,… ,݉௄, respectively, from each 
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Figure 5. Power of Rejecting Ho: R = R0 (R = 90, r = 15)  
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of the K populations for the purpose of testing the hypothesis that the number of red balls 
in the bins is the same in the K populations. 

Using formulas analogous to those given above, we can calculate തܴଵ, തܴଶ, … , തܴ௄ and 
ܸሺ തܴଵሻ, ܸሺ തܴଶሻ, … , ܸሺ തܴ௄ሻ, then construct the vector of means 
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and the covariance matrix 

 V =	ቌ
ܸሺ തܴଵሻ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ܸሺ തܴ௄ሻ

ቍ. 

Consider hypotheses of the form ܪ଴:	ࡾࡸഥ ൌ ૙, where is a c×K matrix, c ≤ K, is a matrix of 
coefficients designed to form linear contrasts among the means. Let ்ܮ and ത்ܴrepresent 
the transpose of the matrix ࡸ and vector ࡾഥ, respecvtively. Note that the variance of ࡾࡸഥ is 

ܸሺࡾࡸഥሻ ൌ  The statistic	.ࢀࡸࢂࡸ	

ܺଶ ൌ ൯ࢀࡸࢂࡸ൫ࢀࡸࢀഥࡾ
ି૚
 ഥࡾࡸ

is asymptotically distributed as Chi-square with ܿ degrees of freedom where c is the rank 
of L. 

 

9. CONCLUDING REMARKS 

In summary, we demonstrated the validity of a large sample test statistic for the simple 
case of testing the hypothesis that the parameter for a set of IHD is a fixed constant. The 
proposed test statistics performed well by maintaining significance at the nominal 0.05 
level. The power of rejection quickly reached to 1.0 as departures from the null 
hypothesis. In addition, the number of bins will impact the power of rejection when 
departures from the null hypothesis. In Sections 7 and 8, we developed a large sample 
test for comparing parameters across several IHG distributions. 
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